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Profile guided optimization (PGO), which has proven to be effective in compilation for branch prediction, could  improve program  performance  in 
most situations. However, traditional PGO methods need to collect numerous program runtime information  through  dynamic profiling for further 
compiler optimization. The cost of such a process is burdensome, it’s usually fine-grained but time-costly, which is unacceptable  for large programs. 
Therefore lightening such cost of PGO is meaningful.

Introduction & Motivation

After determining  the model  and  data used  for  our  task,  
it  is meaningful to explore the dynamic characteristics  bet-
ween branch prediction itself and the model’s configuration. 
Therefore, a few more questions should be answered:

Results & Conclusion

In recent years, machine learning (ML) models have been introduced to guide compiler 
optimization, which can predict program information with slight cost.  While delivering
promising performance, there are numerous adjustable  configurations  when  training 
ML models and integrating them with compilers, including model  structures, features, 
and predicted categories. As such, it is still challenging to design an effective  ML-aided 
compiler optimization system.

Question1: How to represent branch prediction task?
Question2: How to collect training data?
Question3: How to interact with the model?

Question4: What is the label? 
Question5: What is the criteria of our task?
Question6: What is the appropriate data format?

Before using ML to improve PGO, a few questions should
be answered:

Our Exploration

To answer these questions in facilitating PGO with machine 
learning using program’s static properties, this poster pre-
sents an analysis to those questions.

Answer 4&5: Based on Answer 1, the branch density indicates a strongly 
two-head distribution, which guides  us to form a three-way classification 
task. We transfer  our  task  to  predict  the  frequency  and corresponding 
category. And we conduct an empirical analysis on the bin partition rules.  
Both intuition-based and  equal division are tested, which proves that the 
three-way partition  matches  the  distribution  and performs better.  And  
we find  two  representative programs which show 2 different kinds of 
performance variation (improve/decrease) when the partition changed.

Answer 6: We evaluate our model’s  sensitivity to the features and its 
format.  By  constructing  a  matrix  of feature pair’s Pearson product-
moment correlation coefficients, 16  features are  removed with  only 
1% accuracy decrease. And we keep removing features  from  training 
data iteratively to observe accuracy  and  speedup,  the  experimental 
results demonstrate  that  model’s  sensitivity  to  features  is  strongly 
program-dependent cause branch behavior differs from each other.

We implement a prototype system of ML-aided PGO based on the above analysis, which employs predicted weights, rather than realistic profiling 
weights, for branch probability. Evaluation with representative real-world applications and Polybench benchmark demonstrates the effectiveness 
of our method, achieving 1.03× and 1.95× speedup over the baseline (i.e., the programs without PGO), respectively. Moreover,  the performance 
of our ML-aided PGO is very close to the classic PGO (1.05× and 1.97× speedups over the baseline) while reducing 58.3% and 94.8% optimization 
costs.

Answer 1: We have  collected  over  2,000,000 branches  from existing 
benchmarks. From  the  distribution, we  treat  branch taken frequen-
cy as probability, divide  it  into several bins and transform the predic-
tion task into a classification problem  by assigning pre-defined branch 
weights.

Answer 2&3: We implement an instrumentation pass in LLVM, the in-
formation will be acquired  when  compiling  which  largely  lightens 
the  overhead  of  PGO. We  choose  XGBoost,  a  commonly-used  ML 
model  to  build  our predictive model,  because it can provide a good 
balance between accuracy and overhead, and  can  be  transferred to 
trees in C language, which is easy to integrate into LLVM source code.  

Methodology
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