
Facilitating Profile Guided Compiler Optimization
with Machine Learning

Yang Yang
College of Computer Science and Technology,

Jilin University
Changchun, Jilin, China

Xueying Wang
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

Guangli Li*
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

Profile guided optimization (PGO), which has proven to be effective in compilation for branch prediction, could improve program performance in
most situations. However, traditional PGO methods need to collect numerous program runtime information through dynamic profiling for further
compiler optimization. The cost of such a process is burdensome, it’s usually fine-grained but time-costly, which is unacceptable for large programs.
Therefore lightening such cost of PGO is meaningful.

Introduction & Motivation

After determining the model and data used for our task,
it is meaningful to explore the dynamic characteristics bet-
ween branch prediction itself and the model’s configuration.
Therefore, a few more questions should be answered:

Results & Conclusion

In recent years, machine learning (ML) models have been introduced to guide compiler
optimization, which can predict program information with slight cost. While delivering
promising performance, there are numerous adjustable configurations when training
ML models and integrating them with compilers, including model structures, features,
and predicted categories. As such, it is still challenging to design an effective ML-aided
compiler optimization system.

Question1: How to represent branch prediction task?
Question2: How to collect training data?
Question3: How to interact with the model?

Question4: What is the label?
Question5: What is the criteria of our task?
Question6: What is the appropriate data format?

Before using ML to improve PGO, a few questions should
be answered:

Our Exploration

To answer these questions in facilitating PGO with machine
learning using program’s static properties, this poster pre-
sents an analysis to those questions.

Answer 4&5: Based on Answer 1, the branch density indicates a strongly
two-head distribution, which guides us to form a three-way classification
task. We transfer our task to predict the frequency and corresponding
category. And we conduct an empirical analysis on the bin partition rules.
Both intuition-based and equal division are tested, which proves that the
three-way partition matches the distribution and performs better. And
we find two representative programs which show 2 different kinds of
performance variation (improve/decrease) when the partition changed.

Answer 6: We evaluate our model’s sensitivity to the features and its
format. By constructing a matrix of feature pair’s Pearson product-
moment correlation coefficients, 16 features are removed with only
1% accuracy decrease. And we keep removing features from training
data iteratively to observe accuracy and speedup, the experimental
results demonstrate that model’s sensitivity to features is strongly
program-dependent cause branch behavior differs from each other.

We implement a prototype system of ML-aided PGO based on the above analysis, which employs predicted weights, rather than realistic profiling
weights, for branch probability. Evaluation with representative real-world applications and Polybench benchmark demonstrates the effectiveness
of our method, achieving 1.03× and 1.95× speedup over the baseline (i.e., the programs without PGO), respectively. Moreover, the performance
of our ML-aided PGO is very close to the classic PGO (1.05× and 1.97× speedups over the baseline) while reducing 58.3% and 94.8% optimization
costs.

Answer 1: We have collected over 2,000,000 branches from existing
benchmarks. From the distribution, we treat branch taken frequen-
cy as probability, divide it into several bins and transform the predic-
tion task into a classification problem by assigning pre-defined branch
weights.

Answer 2&3: We implement an instrumentation pass in LLVM, the in-
formation will be acquired when compiling which largely lightens
the overhead of PGO. We choose XGBoost, a commonly-used ML
model to build our predictive model, because it can provide a good
balance between accuracy and overhead, and can be transferred to
trees in C language, which is easy to integrate into LLVM source code.

Methodology

Fig. 1 Speedup with Different Division Strategies

Fig. 2 Speedup with Different Feature Remove Strategies

Fig. 3 Speedup on Real-World Applications Fig.4 Optimization Cost on Real-World Applications

	幻灯片编号 1

