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Goal: Dissect the performance overheads of GPU-based confidential computing 
that can motivate various optimizations to address them.

Problem:
• Confidential Computing with GPU is emerging

• Existing work lacks detailed performance dissection

• Optimization insights remain unclear due to limited characterization

Our results on real hardware show that GPU-based CC comes with: 
• Data Movement Overhead (up to 19.7×)

• Low Encryption Throughput (3.36 GB/s)

• Kernel Execution Time (up to 164,030.65× with UVM)

• Kernel Launch Overhead (up to 5.31×)

• Queueing (1.43× and 2.23× on average)

• Fusion, overlapping and quantization

https://github.com/insight-cal-uva/hcc-ispass25-artifact 
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Abundant	Data	and	Task-level	Parallelism

DL/ML/AI Graphics HPC	 Crypto Graphs	 Genomics	

High	Throughput	+	Energy	Efficiency

Graphics	Processing	Units	(GPUs)
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¨ Data is Private
¤ Client	privacy	(chat	bot,	…)
¤ Regulated	(GDPR,	PII,	…)

¨ Data is Massive
¤ Outsource	compute	&	data	to	public	cloud	Infra.

Needs	for	Security	and	Privacy

Can	cloud	service	providers	be	trusted?
4Introduction Background Performance	Model Evaluation Conclusion
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Trusted	Computing
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Confidential	Computing
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Confidential	Computing	with	GPU
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Communication (MMIO/DMA) will trigger #VE, TD will context-switch
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Real	World	Setup

CC-capable CPUs: support TDX or SEV-SNP

H100 is the first GPU that supports CC.

https://github.com/insight-cal-uva/hcc-ispass25-artifact 
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Problem:
• Confidential	Computing	with	GPU	is	emerging
• Existing	work	lacks	detailed	performance	dissection
• Optimization	insights	remain	unclear	due	to	limited	characterization
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System Configuration

Configuration Details

CPU 2× 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores

TME-MK Auto bypass enabled

OS Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)

Hypervisor QEMU 7.2.0 (tdx patched)

TDX Tools TDX 1.5 (tag 2023ww15)

GPU NVIDIA H100 NVL, 94GB HBM3, PCIe 5.0 ×16

CUDA 12.4, Driver 550.127.05

https://github.com/insight-cal-uva/hcc-ispass25-artifact


ISPASS’25@Ghent

Performance	Model

ALLOC
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Performance	Model

H2DALLOC

15

H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

LAUNCH1

K1

H2DALLOC
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H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

LAUNCH1 LAUNCH2
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Kernel Queueing Time (KQT)
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Kernel Execution Time (KET)
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H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

SYNC
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H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

D2H
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D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

FREE
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D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

SYNC D2H FREE

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 
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Time	on	memory	copy

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

LAUNCH1 LAUNCH2
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P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model
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P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model
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P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model
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P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy
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Performance	Model

Focus of this presentation
Ø Data	movement	(H2D,	D2H,	page	migration)
Ø Encryption
Ø Kernel	Execution
Ø Kernel	Launch
Ø Queuing

26

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother
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Transfer	Bandwidth

Fig.1 Copy bandwidth

Base

Observation 1.
ü PCIe	bandwidth	utilization	in	CC	mode	drops	significantly	compared	to	non-CC.
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Transfer	Bandwidth

Fig.1 Copy bandwidth

Base

Observation 1.
ü PCIe	bandwidth	utilization	in	CC	mode	drops	significantly	compared	to	non-CC.

ü Bandwidth	gap	between	pageable	and	pinned	memory	observed	in	non-CC	mode	
disappears	 in	 CC	 mode,	 suggesting	 that	 pinned	 memory	 relies	 on	 pageable	
mechanisms	in	CC	mode.	
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pinned

pageable
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Crypto	Throughput

Fig.2 Crypto throughput

AES is on the critical path.

Observation 2.
ü The	 absence	 of	 dedicated	 hardware	 AES	 engines	 results	 in	 low	 encryption	
throughput,	even	when	using	AES-NI	acceleration.

ü While	 alternative	 cryptographic	 algorithms	 may	 offer	 higher	 throughput,	 they	
often	come	at	the	cost	of	weaker	security	guarantees.	

8.9GB/s

29Introduction Background Performance	Model Evaluation Conclusion



ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

Observation 3.
Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).	

30

Non-CC

? Execution	is	locked	inside	GPU,	no	interaction	with	CPU
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Kernel	Execution	Time

Fig.3 Normalized kernel execution time.
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Non-CC

5.29× 

Source:	NVIDIA

Single	Address	Space
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Frequent	CPU-GPU	interaction!
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Kernel	Execution	Time

Fig.3 Normalized kernel execution time.
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Non-CC

5.29× 

Source:	NVIDIA

Single	Address	Space

ENC/DEC

With	CC	ON
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Frequent	CPU-GPU	interaction!
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Kernel	Execution	Time

Fig.3 Normalized kernel execution time.
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Non-CC

164,030.65×

5.29× 
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Kernel	Execution	Time

Fig.3 Normalized kernel execution time.
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Non-CC

164,030.65×

5.29× 188.87× 
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Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

Observation 3.
Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).

Ø UVM	in	CC	mode	incurs	an	average	slowdown	of	188.87×.		
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Non-CC

164,030.65×

5.29× 188.87× 
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Memory	Transfer	Time

Fig.4 Time (𝜇s) spent on memory copy.

Observation 4.
ü On	average,	 copy	operations	 in	CC	mode	 take	5.80×	 longer	compared	 to	non-CC	
mode,	with	a	maximum	slowdown	of	19.69×.	

ü Pinned	memory	is	converted	to	UVM	encrypted	paging	in	CC	mode	which	incurs	
high	overhead.	

Pinned memory
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Launch	and	Queuing
5.31×

1.42×

1.43×

2.32×

Fig.5 Effect of CC on KLO, LQT, and KQT.

Results are normalized to non-CC time.
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Closer	Look

cudaLaunchKernel
libcuda_static
libcuda.so

RmIoctl
……

dma_direct_alloc
set_memory_decrypted
……

__tdx_hypercall
……

__tdx_hypercall

……
RmIoctl
……

cudaLaunchKernel
CC launch (~52 stacks)Non-CC launch (~37 stacks)

Fig.6 Simplified call stack of a cudaLaunchKernel call, obtained via perf. 

Shared memory related

TD VM-Exit related

Observation 5.
ü On	average,	CC	increases	KLO	by	1.42×	mostly	due	to	TDX	hypercalls.	It	increases	
LQT	by	1.43×	and	KQT	by	2.32×.

ü For	applications	with	a	 low	number	of	kernel	 launches,	KQT	can	be	significantly	
amplified.	

38Introduction Background Performance	Model Evaluation Conclusion
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Fig.7 Distribution of events and their durations for representative applications, in 𝜇s. 

Case	Study
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Fig.7 Distribution of events and their durations for representative applications, in 𝜇s. 
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Fig.7 Distribution of events and their durations for representative applications, in 𝜇s. 
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Increased cycles

Dominated by LaunchCC	won’t	delay	the	finish	of	kernels. CC	will	delay	the	finish	of	kernels.

How	to	optimize?	 Insights:	Fusion	and	overlapping!

Introduction Background Performance	Model Evaluation Conclusion

Case	Study
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Insight:	Fusion

42

Launch	a	new	kernel	
shows	high	KLO.

First	few	launch
shows	high	KLO.

CC-ONCC-OFF

K1 K2 K1 K2 K1
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Aggressive	fusion	is	not	working,	a	right	fusion	parameter	helps.

Fuse	128	->	1
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More	Details

• Memory	Management
• Kernel-to-Launch	Ratio	
• Overlapping
• CNNs
• LLMs
• Quantization
• …

More	details	in	the	paper!
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We present a comprehensive performance evaluation of GPU-based CC guided by 
a simple performance model, and considered several optimizations towards 
addressing the overheads of CC.

Our results on real hardware show that GPU-based CC comes with: 

Conclusion

Ø Data	movement:	 5.80×	(avg)					 19.69×	(max)	 3.03	GB/s
Ø Encryption:	 	 3.36	GB/s	(AES-GCM)
Ø Kernel	Execution:	 0.48%	(CC)	 	 188.87×	(avg,	CC+UVM)
Ø Kernel	Launch:	 	 1.42×	(avg)	 	 5.31×	(max)
Ø Queuing:	 	 1.43×	(avg,	LQT)	 	 2.23×	(avg,	KQT)
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