
Yang	Yang,	Mohammad	Sonji,	Adwait	Jog

{yangyang, npv2tk, ajog} @virginia.edu

Insight Computer Architecture Lab

Dissecting Performance Overheads of
Confidential Computing in GPU-based Systems

ISPASS’25@Ghent

Goal: Dissect the performance overheads of GPU-based confidential computing
that can motivate various optimizations to address them.

Problem:
• Confidential Computing with GPU is emerging

• Existing work lacks detailed performance dissection

• Optimization insights remain unclear due to limited characterization

Our results on real hardware show that GPU-based CC comes with:
• Data Movement Overhead (up to 19.7×)

• Low Encryption Throughput (3.36 GB/s)

• Kernel Execution Time (up to 164,030.65× with UVM)

• Kernel Launch Overhead (up to 5.31×)

• Queueing (1.43× and 2.23× on average)

• Fusion, overlapping and quantization

https://github.com/insight-cal-uva/hcc-ispass25-artifact

Executive	Summary

19.7×

164,030.65×

5.31×
1.43× 2.23×

O
ve

rh
ea

d

ISPASS’25@Ghent

https://github.com/insight-cal-uva/hcc-ispass25-artifact

ISPASS’25@Ghent

Abundant	Data	and	Task-level	Parallelism

DL/ML/AI Graphics HPC	 Crypto Graphs	 Genomics	

High	Throughput	+	Energy	Efficiency

Graphics	Processing	Units	(GPUs)

3

Credit/Source:	AMD,	NVIDIA,	Wiki	

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

¨ Data is Private
¤ Client	privacy	(chat	bot,	…)
¤ Regulated	(GDPR,	PII,	…)

¨ Data is Massive
¤ Outsource	compute	&	data	to	public	cloud	Infra.

Needs	for	Security	and	Privacy

Can	cloud	service	providers	be	trusted?
4Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Trusted	Computing

ARM
TrustZone
2002

Intel
SGX
2015

AMD
SEV
2016

RISC-V
KeyStone
2019

AMD
SEV-SNP
2020

RISC-V
Penglai
2020

Intel
TDX
2020

ARM
CCA
2021

Intel
SPR
2023

Intel
EMR
2023

CPUs With TDX

NVIDIA
HCC
2023

The first
commercial GPU TEE

VM-based
Isolation

CC
Consortium

2019

Credit/Source:	ARM/INTEL/AMD/CCC/RISC-V/NVIDIA/Wiki

5

GPU-based	CC

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Confidential	Computing

CPU Package

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

6Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

ISPASS’25@Ghent

Confidential	Computing

CPU Package

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

7

DDR

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

ISPASS’25@Ghent

Confidential	Computing

CPU Package

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

8

DDR

TDX ModuleHypervisor

Trust Domain
Isolation

Traditional VM

APP

OS

APP

OS(+TDX)

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

ISPASS’25@Ghent

Confidential	Computing	with	GPU

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

9

DDR

TDX ModuleHypervisor

Trust Domain
Isolation

Traditional VM

APP

OS

APP

OS(+TDX)

PCIe

GMMU
Compute
Engines

HBM

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

CPU Package GPU Package

ISPASS’25@Ghent

Confidential	Computing	with	GPU

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

10

DDR

TDX ModuleHypervisor

Trust Domain
Isolation

Traditional VM

APP

OS

APP +
CUDA

OS(+TDX)

PCIe

GMMU
Compute
Engines

HBM

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

CPU Package GPU Package

ISPASS’25@Ghent

Confidential	Computing	with	GPU

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

11

DDR

TDX ModuleHypervisor

Trust Domain
Isolation

Traditional VM

APP

OS

APP +
CUDA

OS(+TDX)

PCIe

GMMU
Compute
Engines

HBM

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

CPU Package GPU Package

ISPASS’25@Ghent

Confidential	Computing	with	GPU

PCIe
MEE

(TME-MK)iMC

LLC

AES-NI

Cores

Trust
boundary

Hardware Platform

12

DDR

TDX ModuleHypervisor

Trust Domain
Isolation

Traditional VM

APP

OS

APP +
CUDA

OS(+TDX)

PCIe

GMMU
Compute
Engines

HBM

DMA/MMIO

Communication (MMIO/DMA) will trigger #VE, TD will context-switch

Introduction Background Performance	Model Evaluation Conclusion
MEE:	Memory	Encryption	Engine

CPU Package GPU Package

ISPASS’25@Ghent

Real	World	Setup

CC-capable CPUs: support TDX or SEV-SNP

H100 is the first GPU that supports CC.

https://github.com/insight-cal-uva/hcc-ispass25-artifact

13

Problem:
• Confidential	Computing	with	GPU	is	emerging
• Existing	work	lacks	detailed	performance	dissection
• Optimization	insights	remain	unclear	due	to	limited	characterization

Introduction Background Performance	Model Evaluation Conclusion

System Configuration

Configuration Details

CPU 2× 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores

TME-MK Auto bypass enabled

OS Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)

Hypervisor QEMU 7.2.0 (tdx patched)

TDX Tools TDX 1.5 (tag 2023ww15)

GPU NVIDIA H100 NVL, 94GB HBM3, PCIe 5.0 ×16

CUDA 12.4, Driver 550.127.05

https://github.com/insight-cal-uva/hcc-ispass25-artifact

ISPASS’25@Ghent

Performance	Model

ALLOC

14Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Performance	Model

H2DALLOC

15

H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Performance	Model

LAUNCH1

K1

H2DALLOC

16

H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT)

Kernel Launch Overhead (KLO)

Kernel Execution Time (KET)

17

H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

Launch Queueing Time (LQT)

ISPASS’25@Ghent

Performance	Model

SYNC

18

H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT)

Kernel Launch Overhead (KLO)

Kernel Execution Time (KET)

Launch Queueing Time (LQT)

ISPASS’25@Ghent

Performance	Model

D2H

19

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

SYNCLAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT)

Kernel Launch Overhead (KLO)

Kernel Execution Time (KET)

Launch Queueing Time (LQT)

ISPASS’25@Ghent

Performance	Model

FREE

20

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

D2HSYNCLAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT)

Kernel Launch Overhead (KLO)

Kernel Execution Time (KET)

Launch Queueing Time (LQT)

ISPASS’25@Ghent

Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

SYNC D2H FREE

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

21

Time	on	memory	copy

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC SYNC D2H FREE

22

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

ISPASS’25@Ghent

Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC SYNC D2H FREE

β1 β2

23

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

ISPASS’25@Ghent

Performance	Model

LAUNCH1 LAUNCH2

K1 K2

H2DALLOC SYNC D2H FREE

β1 β2

24

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

ISPASS’25@Ghent

Performance	Model

25

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

D2H:	device	(GPU)	to	host	(CPU)	copy
H2D:	host	(CPU)	to	device	(GPU)	copy

Introduction Background Performance	Model Evaluation Conclusion

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

ISPASS’25@Ghent

Performance	Model

Focus of this presentation
Ø Data	movement	(H2D,	D2H,	page	migration)
Ø Encryption
Ø Kernel	Execution
Ø Kernel	Launch
Ø Queuing

26

P = Tmem + Σ(KLO+LQT) + Σ[(1-βi)(KET+KQT)] + Tother

Introduction Background Performance	Model Evaluation Conclusion

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)

ISPASS’25@Ghent

Transfer	Bandwidth

Fig.1 Copy bandwidth

Base

Observation 1.
ü PCIe	bandwidth	utilization	in	CC	mode	drops	significantly	compared	to	non-CC.

27Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Transfer	Bandwidth

Fig.1 Copy bandwidth

Base

Observation 1.
ü PCIe	bandwidth	utilization	in	CC	mode	drops	significantly	compared	to	non-CC.

ü Bandwidth	gap	between	pageable	and	pinned	memory	observed	in	non-CC	mode	
disappears	 in	 CC	 mode,	 suggesting	 that	 pinned	 memory	 relies	 on	 pageable	
mechanisms	in	CC	mode.	

28

pinned

pageable

Introduction Background Performance	Model Evaluation Conclusion

?

ISPASS’25@Ghent

Crypto	Throughput

Fig.2 Crypto throughput

AES is on the critical path.

Observation 2.
ü The	 absence	 of	 dedicated	 hardware	 AES	 engines	 results	 in	 low	 encryption	
throughput,	even	when	using	AES-NI	acceleration.

ü While	 alternative	 cryptographic	 algorithms	 may	 offer	 higher	 throughput,	 they	
often	come	at	the	cost	of	weaker	security	guarantees.	

8.9GB/s

29Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

Observation 3.
Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).	

30

Non-CC

? Execution	is	locked	inside	GPU,	no	interaction	with	CPU

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

31

Non-CC

5.29×

Source:	NVIDIA

Single	Address	Space

Introduction Background Performance	Model Evaluation Conclusion

Frequent	CPU-GPU	interaction!

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

32

Non-CC

5.29×

Source:	NVIDIA

Single	Address	Space

ENC/DEC

With	CC	ON

Introduction Background Performance	Model Evaluation Conclusion

Frequent	CPU-GPU	interaction!

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

33

Non-CC

164,030.65×

5.29×

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

34

Non-CC

164,030.65×

5.29× 188.87×

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Kernel	Execution	Time

Fig.3 Normalized kernel execution time.

Observation 3.
Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).

Ø UVM	in	CC	mode	incurs	an	average	slowdown	of	188.87×.		

35

Non-CC

164,030.65×

5.29× 188.87×

Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Memory	Transfer	Time

Fig.4 Time (𝜇s) spent on memory copy.

Observation 4.
ü On	average,	 copy	operations	 in	CC	mode	 take	5.80×	 longer	compared	 to	non-CC	
mode,	with	a	maximum	slowdown	of	19.69×.	

ü Pinned	memory	is	converted	to	UVM	encrypted	paging	in	CC	mode	which	incurs	
high	overhead.	

Pinned memory

36Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Launch	and	Queuing
5.31×

1.42×

1.43×

2.32×

Fig.5 Effect of CC on KLO, LQT, and KQT.

Results are normalized to non-CC time.

37Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

Closer	Look

cudaLaunchKernel
libcuda_static
libcuda.so

RmIoctl
……

dma_direct_alloc
set_memory_decrypted
……

__tdx_hypercall
……

__tdx_hypercall

……
RmIoctl
……

cudaLaunchKernel
CC launch (~52 stacks)Non-CC launch (~37 stacks)

Fig.6 Simplified call stack of a cudaLaunchKernel call, obtained via perf.

Shared memory related

TD VM-Exit related

Observation 5.
ü On	average,	CC	increases	KLO	by	1.42×	mostly	due	to	TDX	hypercalls.	It	increases	
LQT	by	1.43×	and	KQT	by	2.32×.

ü For	applications	with	a	 low	number	of	kernel	 launches,	KQT	can	be	significantly	
amplified.	

38Introduction Background Performance	Model Evaluation Conclusion

ISPASS’25@Ghent

When it starts

H
ow

 lo
ng

 it
 ta

ke
s

(d
ur

at
io

n)

Launch

Kernel

Σ(KLO+LQT)

Σ(KET+KQT)

Fig.7 Distribution of events and their durations for representative applications, in 𝜇s.

Case	Study

Introduction Background Performance	Model Evaluation Conclusion 39

Last	Kernel

ISPASS’25@Ghent

Fig.7 Distribution of events and their durations for representative applications, in 𝜇s.

When it starts

H
ow

 lo
ng

 it
 ta

ke
s

(d
ur

at
io

n)

Launch

Kernel

Σ(KLO+LQT)

Σ(KET+KQT)

Increased cycles

Last	Kernel	(Base)

Dominated by Launch

Case	Study

Introduction Background Performance	Model Evaluation Conclusion 40

Last	Kernel	(CC)

ISPASS’25@Ghent

Fig.7 Distribution of events and their durations for representative applications, in 𝜇s.

When it starts

H
ow

 lo
ng

 it
 ta

ke
s

(d
ur

at
io

n)

Launch

Kernel

Σ(KLO+LQT)

Σ(KET+KQT)

Increased cycles

Dominated by LaunchCC	won’t	delay	the	finish	of	kernels. CC	will	delay	the	finish	of	kernels.

How	to	optimize?	 Insights:	Fusion	and	overlapping!

Introduction Background Performance	Model Evaluation Conclusion

Case	Study

41

Fusion

Last	Kernel	(Base) Last	Kernel	(CC)

ISPASS’25@Ghent

Insight:	Fusion

42

Launch	a	new	kernel	
shows	high	KLO.

First	few	launch
shows	high	KLO.

CC-ONCC-OFF

K1 K2 K1 K2 K1

Introduction Background Performance	Model Evaluation Conclusion

Aggressive	fusion	is	not	working,	a	right	fusion	parameter	helps.

Fuse	128	->	1

ISPASS’25@Ghent

More	Details

• Memory	Management
• Kernel-to-Launch	Ratio	
• Overlapping
• CNNs
• LLMs
• Quantization
• …

More	details	in	the	paper!

43Introduction Background Performance	Model Evaluation Conclusion

We present a comprehensive performance evaluation of GPU-based CC guided by
a simple performance model, and considered several optimizations towards
addressing the overheads of CC.

Our results on real hardware show that GPU-based CC comes with:

Conclusion

Ø Data	movement:	 5.80×	(avg)					 19.69×	(max)	 3.03	GB/s
Ø Encryption:	 	 3.36	GB/s	(AES-GCM)
Ø Kernel	Execution:	 0.48%	(CC)	 	 188.87×	(avg,	CC+UVM)
Ø Kernel	Launch:	 	 1.42×	(avg)	 	 5.31×	(max)
Ø Queuing:	 	 1.43×	(avg,	LQT)	 	 2.23×	(avg,	KQT)

H2D LAUNCH1 LAUNCH2ALLOC SYNC FREED2H

K1 K2

H2D LAUNCH1 LAUNCH2ALLOC SYNC FREEENC D2H DEC

K1 K2

LAUNCH1 LAUNCH2ALLOC SYNC FREE

Time

DEC

... K1 ... K2

Baseline

With CC

With CC+UVM

Encryption & API Overhead

Encrypted Paging Overhead

Kernel Queueing Time (KQT)
Kernel Execution Time (KET)
Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO)
Page faults and encrypted migrationsH2D LAUNCH1 LAUNCH2ALLOC SYNC FREED2H

K1 K2

H2D LAUNCH1 LAUNCH2ALLOC SYNC FREEENC D2H DEC

K1 K2

LAUNCH1 LAUNCH2ALLOC SYNC FREE

Time

DEC

... K1 ... K2

Baseline

With CC

With CC+UVM

Encryption & API Overhead

Encrypted Paging Overhead

Kernel Queueing Time (KQT)
Kernel Execution Time (KET)
Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO)
Page faults and encrypted migrationsH2D LAUNCH1 LAUNCH2ALLOC SYNC FREED2H

K1 K2

H2D LAUNCH1 LAUNCH2ALLOC SYNC FREEENC D2H DEC

K1 K2

LAUNCH1 LAUNCH2ALLOC SYNC FREE

Time

DEC

... K1 ... K2

Baseline

With CC

With CC+UVM

Encryption & API Overhead

Encrypted Paging Overhead

Kernel Queueing Time (KQT)
Kernel Execution Time (KET)
Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO)
Page faults and encrypted migrations

Introduction Background Performance	Model Evaluation Conclusion 44

Thank	You!
Questions?

Yang Yang, Mohammad Sonji, Adwait Jog

{yangyang, npv2tk, ajog} @virginia.edu

Dissecting Performance Overheads of
Confidential Computing in GPU-based Systems

