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SUMMARY
Problem	and	Motivation
• Multi-GPU systems accelerate workloads by interconnecting multiple GPUs 
• These interconnects often exhibit non-uniform bandwidth as systems scale
• Slower links become performance bottlenecks, limiting scalability

Key	Ideas
• Target slower bandwidth links with two key strategies:

• Reduce network traffic
• Manage network traffic more efficiently

• We propose NetCrafter, a network crafting engine that:
• Stitches partially empty flits to improve flit utilization
• Trims network packets with redundant data
• Sequences network traffic to prioritize latency-critical packets

Performance
• Up to 64% faster, and 16% average speedup over baseline non-uniform multi-GPU setups
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BACKGROUND
GPUs are used to accelerate a wide range of applications

https://www.cerebras.net/blog/harnessing-the-power-of-sparsity-for-large-gpt-ai-models

ChatGPT

Graph Processing DNN AR/VR

GenomicsHPC Workloads

5

Rising application demands outgrow single-GPU capabilities
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Multiple GPUs are connected over high bandwidth interconnects to scale:

1. Compute by harnessing collective compute power of multiple GPUs
2. Memory by pooling memory across GPUs for a larger memory space

MULTI-GPU	SYSTEMS	TO	THE	RESCUE
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SCALING	MULTI-GPU	SYSTEMS
Multi-GPU systems must scale with growing application demands

These systems typically scale in a hierarchical manner
• Tightly coupled (e.g., MCM style): Linked via higher-bandwidth interconnects
• Loosely coupled (e.g., Multi-GPU style): Connected over lower-bandwidth interconnects

Multi-GPU scaling typically introduces bandwidth non-uniformity 
(e.g., Frontier, Summit, Aurora)
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NON-UNIFORM	BANDWIDTH	->	NUMA
Memory access bandwidth varies across the system
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NON-UNIFORM	BANDWIDTH	->	NUMA
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Memory access bandwidth varies across the system
Nearby GPUs enjoy higher bandwidth and lower latency, and vice versa
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NON-UNIFORM	BANDWIDTH	->	NUMA
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Non-uniform bandwidth multi-GPU systems are constrained by:
Slower bandwidth interconnects connecting the GPUs
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Non-uniform bandwidth causes up to 2.3× slowdown in GPU performance
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NON-UNIFORM	BANDWIDTH	->	NUMA

Higher is better



Slower interconnects lead to 
performance bottlenecks. How can we 
minimize the impact of non-uniform 
bandwidth in emerging multi-GPU 

systems?
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GOAL
Optimize slower bandwidth links:

1. Reducing network traffic across these links

2. Efficiently managing network traffic across these links
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Transmitting	packets	across	the	network
Network Transfer through Flits
• Flit = fixed-size unit (x bytes), sent per cycle
• Basic granularity of data transfer in interconnects

GPU packet breakdown
• Packet = Header + Payload

• Split into flits (fixed-size units)
• Empty bytes padded to align the last flit with flit size

Flit

GPU request Packet

Header Payload
Transmitted to network
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OBSERVATION	#01
Inefficient Flit Utilization Due to Padding
• Flits contain substantial empty bytes
• These empty bytes are padded with redundant data
• Redundant data increases unnecessary network load

Each packet type contributes differently to this network load
• Read Req (Header + Address) 
• Write Req (Header + Data + Address)                  
• Page Table Req (Header +Address)      

Write Req Read RspWrite RspRead Req Page Table ReqPage Table Rsp

• Read Rsp (Header + Data)
• Write Rsp (Header) 
• Page Table Rsp (Header + Address)

Empty 

Packet Type

Shape
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OBSERVATION	#01
Different packet types introduce varying padding overhead
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OBSERVATION	#01
Different packet types introduce varying padding overhead

0%
20%
40%
60%
80%

100%

GUPS MT
MIS

IM
2COL

ATAX BS
MM

2
MVT

SP
M

V PR SR
SY

R2K
LE

NET

RNET18

VGG16

Flits 75% padded Flits 25% padded No padding

Pe
rc

en
ta

ge
 o

f T
ot

al
 F

lit
s

Write Req Read RspWrite RspRead Req Page Table ReqPage Table RspPacket Type

Shape

%Padded 25% 75%25% 25% + No padding 25% + No padding 25%

19

~40% of flits in the network are padded with 25–75% useless data



KEY	IDEA	I:	STITCHING	
Stitch flits across request categories to reduce network traffic overhead
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Stitch flits across request categories to reduce network traffic overhead



KEY	IDEA	I:	STITCHING	

Network Traffic Reduced
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Stitch flits across request categories to reduce network traffic overhead



OBSERVATION	#02
Prefetched unused data wastes bandwidth
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OBSERVATION	#02
Prefetched unused data wastes bandwidth
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OBSERVATION	#02
Prefetched unused data wastes bandwidth
• Read response includes more data than requested
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OBSERVATION	#02
Prefetched unused data wastes bandwidth
• Read response includes more data than requested
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KEY	IDEA	II:	TRIMMING	
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Trim redundant flits to cut network overhead
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KEY	IDEA	II:	TRIMMING	

Network Traffic Reduced
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Trim redundant flits to cut network overhead



OBSERVATION#03
PTW-related flits are more latency critical than other flits
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Higher is better



KEY	IDEA	III:	SEQUENCING	
Prioritize flits in flight so latency-critical packets lead the line on slow links
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Execution Time Reduced

KEY	IDEA	III:	SEQUENCING	
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Prioritize flits in flight so latency-critical packets lead the line on slow links



PUTTING	IT	TOGETHER

Execution Time Reduced

Network Traffic Reduced

Network Traffic Reduced

Stitching

Trimming

Sequencing
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1. Reducing network traffic across these links
2. Efficiently managing network traffic across these links
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Each cluster switch includes an integrated NetCrafter controller

Mechanism:	NetCrafter

NetCrafter Controller  
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Each cluster switch includes an integrated NetCrafter controller
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Each cluster switch includes an integrated NetCrafter controller
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Flit to Stitch
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NetCrafter Controller  

Each cluster switch includes an integrated NetCrafter controller

Mechanism:	NetCrafter
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Flit Pooling (please check the paper!) 

Each cluster switch includes an integrated NetCrafter controller

Mechanism:	NetCrafter
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METHODOLOGY
• MGPUSim Simulator:

• Design points:
• Baseline: non-uniform bandwidth configuration without NetCrafter
• Sector Cache: baseline configuration with sector cache 
• NetCrafter: non uniform system with Stitching, Trimming & Sequencing

Compute Unit 1GHz, 64 per GPU (4 GPUs in total)
L1 D/I, L2 cache 64/32KB, 4MB per GPU (shared)
Heterogeneous Interconnect Inter-GPU-cluster - 16GBps, bi-directional

Intra-GPU-cluster - 128GBps, bi-directional
CTA/Page Scheduling LASP (Locality-Aware Scheduling and Placement)
NetCrafter Parameters Cluster Queue - 1024 Entries (16B each)
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NetCrafter	vs.	Baseline
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Higher is better

NetCrafter provides 16% speedup on average

1.64x
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55

Higher is better
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1.64x



NetCrafter	vs.	Baseline	+	Sector	Cache
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Higher is better

NetCrafter provides 16% speedup on average
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More	Details…
• Flit	Pooling	and	Selective	Flit	Pooling
• Impact	of	trimming	on	cache	MPKI
• Modifications	to	the	packet	structure
• Hardware	overhead
• Latency	overhead
• CTA/data	placement
• Coherence	implications
• Handling	deadlocks
• Packet	unstitching	details	at	the	target
• Sensitivity	studies	with	varied	:

• Flit-Pooling	windows
• Bandwidth	numbers	and	ratios
• Flit	sizes

Please	check	our	paper!
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59

NetCrafter,	a	combination	of	novel	approaches	
(Stitching,	Trimming	and	Sequencing)	to	deal	with	the	
multi-GPU	network	traffic,	which	provides	up	to	64%	

speedup	and	16%	speedup	on	average.

Our	proposed	techniques	are	generic	and	can	be	applied	
to	any	network.	They	are	especially	useful	in	alleviating	
the	 bottlenecks	 presented	 by	 lower-bandwidth	
networks	connecting	multiple	groups	of	GPUs.	

Conclusion
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Packet	structure	to	support	NetCrafter
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Cache	MPKI	Comparison	with	Sector	Cache
L1

 C
ac

he
 M

PK
I N

or
m

al
ize

d 
to

 
Tr

im
m

in
g 

Ap
pr

oa
ch

0

1

2

3

4

GUPS MT
MIS

IM
2COL

ATAX BS
MM

2
MVT

SP
M

V PR SR
SY

R2K
LE

NET

RESN
ET

18

VGG16

Trimming Sector Cache Baseline (16B)



66


